### Mars Today 1

An immediate and inexpensive program for manned Mars visitation

# **Basic Assumptions**

- No nuclear components
- No heavy lift launch capability
- No oversized components
- Use existing components to minimize development
- Emergency supplies for crew
- Recycle?

# Major systems

- Space Propulsion
- Transit Habitation
- Surface Habitation
- Mars Lander
- Crew Ferry Vehicle(s)

# Space Propulsion



- Centaur (Mentaur)
- Empty Mass 2200Kg
- Lox/H2 16,800Kg
- Lox/CH4 42,200kg

A Mentaur is a Centaur upper Stage with modified RL-10 Engines and propellant tanks for CH4 instead of LH2. Same shape, different mass.

#### Transit Habitation



- 'The Mir core'
- 20,000 Kg
- Orbital crew habitat
- Long range Earth communications
- 16000 Kg Provisions

# Surface Habitation Equipment



- Multiple deliveries
- 3m diameter
- 5m long
- 10,000Kg

#### Mars Lander





- 20,000 kg GLOW
- Hypersonic aerodynamic L/D 1.0
- 10,000 Kg Payload (surface module etc)
- Mars launch capability (if resupplied with 10,000 kg propellant)

# Crew Ferry Vehicle

- Deliver and retrieve crew
- Space Shuttle
- Soyuz/Apollo/etc

# Mars Today Supply Profile

- LEO Assembly
- First LEO Impulse
- Trans Mars Impulse
- Trans Mars Cruise
- Direct Entry to Landing

# Supply First LEO Impulse







- DeltaV=1.5 km/s
- New Orbit = 300x11000km Alt
- Stage Centaur



### Supply Trans Mars Impulse



- Mass 39 (72) Mg
- Burn Most of Centaur
- DeltaV=2.4 km/s
- Escape Excess V =
  4.3 km/s or less

# Supply Cruise / Entry



- Time 9 months
- Available DeltaV = 0.25 km/s
- Aerobrake for Mars Orbit Capture
- Autoland / Remote

### Mars Today Manned Profile

- LEO Assembly
- First LEO Impulse
- Trans Mars Impulse
- Trans Mars Cruise
- Mars Orbit Capture
- Mars Braking Descent

- Mars Surface Stay
- Mars Orbit Rndvs
- Mars Lander Return
- Trans Earth Impulse
- Earth Orbit Capture
- Crew Recovery

# Manned First LEO Impulse



- Burn Four Centaurs
- DeltaV = 1.7 km/s
- New Orbit = 300x1300 km Alt
- Stage Centaurs

### Manned Trans Mars Impulse



- Burn 3.25 of Centaurs
- DeltaV = 4.2 km
- C3 = 4.3 km or less depending on req.

#### Manned Cruise



- Time 10 months
- Supplies for 36 month with failed recycling at minimal levels

# Manned Mars Orbit Capture



- 2/3 of Supplies Rem
- Initial C3 = 4 km/s
- Burn 1 Centaur
- DeltaV = 1.4 km/s
- Final orbit =
  - 3700 x 357000 km
  - -(300x354000 alt)

### Manned Mars Braking Decent



- Aerobrakes
- Land with beacon assistance
  - DeltaV = 200-500m/s

# Mars Surface Stay





- Two+ early supply missions
- Surface stay 1.5 Yrs
- Supplies for 36 month with failed recycling at minimal levels
- Resupply option
- Abort to orbit early

#### Mars Orbit Rendevous



- Lander fueled for ascent to orbit
- final orbit matched with transit hab
- Offload extra supplies
- Hab may have lowered orbit during stay

### Manned Trans Earth Impulse



- Leave Lander
- Burn 1/2 of Centaur
- DeltaV = 1.47
- Final final C3=4km/s

### Manned Earth Orbit Capture



- Initial C3 = 4.2 km/s
- Burn 0.125 of Centaur
- DeltaV = 0.8 km/s
- Final orbit =
  - 300x 787000 km
- Alternate RV
  - 3000kg vs 4200kg

### Optional Crew Recovery



- Parking orbit
- Rendezvous with crew transfer vehicle
- Trasit hab may be braked to Leo

# System Costs

- Centaur Space Propulsion = \$20M
- Transit Habitat = \$30M
- Surface Habitat = \$30M
- Lander Development = \$200M
- Lander = \$30M
- Launch of 20000kg = \$20-300M

# Supply Mission Cost

• 2 Centaurs \$40 M

• 1 Lander \$30 M

• Payload \$30 M

• Launch 3 units \$300M

- Total = \$400M

#### Manned Mission Cost

• 9 Centaurs \$180 M

• 1 Lander \$30 M

• Tranist Hab \$30 M

• Launch 11 units \$ 1100M

- Optimistic Total = \$1340M

#### **Total First Costs**

- 3 Supply Missions \$1200M
- 1 manned mission \$1340M
- Lander development \$300M

- Total Cost for first mission = \$2840M
- +shuttle flights and assembly

#### Launch Costs

- 20 Launches
  - Assuming \$100M/Proton
  - Launch costs = \$2000M
- Total Price is \$2840M
- Reducing Launch to \$20M
  - \$1000kg (1/2x Zenit x2)
- Total Price is \$1240M